
A Real-Time Vendor-Neutral Programmable
Scheduler Architecture for Cellular Networks

Wenhao Zhang∗, Zhouyou Gu∗, Wibowo Hardjawana∗, Branka Vucetic∗,
Simon Lumb†, David McKechnie† and Todd Essery†

∗School of Electrical and Information Engineering, The University of Sydney, Australia, †Telstra Corporation Ltd
Email: {wenhao.zhang, zhouyou.gu, wibowo.hardjawana, branka.vucetic}@sydney.edu.au

{simon.lumb, david.mckechnie, todd.essery}@team.telstra.com

Abstract—The current Downlink Shared Channel (DLSCH)
resource scheduler for cellular networks has the following
features: 1) it is integrated with an evolved NodeB (eNB) and 2)
uses proprietary interfaces. The first causes a temporary outage
whenever the scheduler logic is reprogrammed to accommodate
traffic profiles that have different requirements, while the latter
prevents multi-vendor interoperability. In this paper, we propose
a real-time vendor-neutral programmable DLSCH scheduler ar-
chitecture. The scheduler and eNB are separated into two binary
files that communicate via an agent. The agent uses standard
interfaces to interpret information from/to different eNB vendors
in real time. The proposed architecture is implemented on
two open source 3rd Generation Partnership Project standard-
compliant eNB stacks from the OAI and SRS. Experimental
results show that the proposed architecture addresses the real
time and proprietary challenges mentioned above.

Index Terms—Long Term Evolution, vendor-neutral, pro-
grammable scheduler, hardware implementation

I. INTRODUCTION

Multiple use cases with time-varying downlink traffic
profiles in the cellular networks, namely enhanced mo-
bile broadBand (eMBB), massive machine type communica-
tions (mMTC) and ultra-reliable low-latency communications
(URLLC), have different requirements in terms of packet
size, priority, reliability and latency. They are carried by a
transport channel referred to as the Downlink Shared Channel
(DLSCH). The radio resources to transmit this channel are
allocated by a scheduler every transmission time interval
(TTI). The amount of allocated radio resources depends on
the current traffic demands, which change from time to time.
This implies that the DLSCH scheduler logic needs to be
programmed so that the needed resources are matched with
the traffic requirements.

Multiple DLSCH programmable schedulers that run at the
edge base stations (BSs), referred to as evolved NodeBs
(eNBs), have been developed in the past. They range from
commercial cellular networks operated by commercial ven-
dors to those built as part of experimental research networks
[1]–[3]. These experimental networks are built on top of open
source eNBs from the OpenAirInterface (OAI) [4], referred to
as OAI eNB, and Software Radio Systems (SRS) [5], referred
to as SRS eNB. All the above mentioned schedulers have
three commonalities. First, the behaviour of these schedulers
can only be changed from a controller of the network opera-
tors, either by selecting a pre-defined logic, such as round

robin (RR) or proportional fair (PF) scheduling [1] or by
changing pre-defined parameters such as priorities, minimum
bitrates, packet delay budgets, etc. [2]. Second, they are tightly
embedded into the eNBs, meaning that they run there as a
single binary file. If the scheduler logic is re-programmed, the
eNB needs to be recompiled; this leads to a temporary out-
age. Thus, these schedulers are non-real-time programmable.
Third, the communication interface between the scheduler
and the media access control (MAC) is proprietary; therefore,
there is no multi-vendor interoperability. This means operators
need to use schedulers from the same vendor as those used
for eNBs, which is not desirable in commercial networks.
Recently, the O-RAN Alliance proposed vendor-neutral inter-
faces for eNBs to allow multi-vendor interoperability between
baseband processing and radio frequency (RF) units [6]. To
the best of our knowledge, no attempt has so far been made
to create a real-time vendor-neutral programmable DLSCH
scheduler for cellular networks.

In this paper, we propose a Real-Time Vendor-Neutral
(RTVN) programmable DLSCH scheduler architecture. The
first contribution here is that the DLSCH scheduler logic
at an eNB will become real-time programmable. This is
achieved by separating the DLSCH scheduler from the eNB
as a separate binary file, referred to as a shared library. The
remaining eNB functions are then run in another binary file,
referred to as ReNB. As a result of the separation, the logic
of the DLSCH can be changed and compiled individually
and in real time, without interrupting the operation of the
eNB. This is in contrast with [1] and [2], where any change
made to the scheduler logic will result in a temporary outage
at the eNB. The second contribution is a vendor-neutral
DLSCH scheduler that works with the ReNB vendor. This is
achieved by standardising the interface parameters exchanged
between the scheduler and ReNB, referred to as the global
variable (GV). This is in contrast with [1] and [2], which
employ proprietary interfaces. The third contribution is the
development of a vendor-neutral controller that can generate
the shared library containing the DLSCH scheduler logic. The
scheduler logic is written by operators and complied as a
shared library at the controller, using the GV as its interface
parameters. The shared library is then sent to eNB and is used
as a new scheduler. A prototype for the above architectures,
running on different ReNBs from the OAI and SRS, is



Embedded
DLSCH
scheduler Coding

RBG mapping

MUX
PDU

DLSCH data processoreDB

System configuration: Bandwidth
Historical information: Throughput

QoS: QCI

PHY: Channel qualtiy indicator

RLC: Size of SDUs

PDU allocation

MCS selection

RBG allocation

MAC

Coded
symbol

SDU

Fig. 1. eNB DLSCH scheduler and data processor

then developed. Corresponding agents are then developed
inside these two ReNBs to 1) ensure the shared library can
communicate with ReNB by using vendor-neutral interface
parameters, GV; and 2) replace the shared library with a new
one in real time. Several over-the-air Long Term Evolution
(LTE) standard-compliant experiments using commercial user
equipment (UE) are conducted to show the benefits of the
proposed architecture over [1] and [2]. Note that the proposed
architecture can be used to schedule other transport channels
in LTE and in fifth generation (5G) networks by expanding
the functionalities of the agent and the GV. The code suite
of proposed vendor-neutral DLSCH scheduler and related
interface is at https://github.com/harryzwh/ops project.

The remainder of this paper is organised as follows. In
Section II and Section III, we introduce the DLSCH scheduler
for both the existing and the proposed RTVN eNBs. In
Section IV, we describe the controller used for it. The proto-
type and its experimental results are presented in Section V.
Section VI concludes the paper.

II. THE DLSCH SCHEDULER AND DATA PROCESSOR

We will first explain the existing embedded eNB scheduler
architecture. This architecture is shown in Fig. 1; it consists
of an embedded DLSCH scheduler and its corresponding
MAC layer functions (namely, eNB databases (eDB) and a
DLSCH data processor). For simplicity, we follow the default
configurations of open-source LTE experimental networks,
the OAI eNB and SRS eNB: 1) a single-input-single-output
(SISO) system (transmit mode 1); and 2) resource allocation
type 0, which allocates radio resources to UEs based on the
resource block group (RBG), consisting of multiple resource
blocks (RBs).

The inputs used by the DLSCH scheduler are stored in
eDB and grouped into two categories: the eNB system and
the UE information. The eNB system stores information on
available RBs in each TTI. For each instance of UE infor-
mation, a historical downlink throughput, a channel quality
indicator (CQI) and data radio bearer (DRB) information are
stored. DRB information consists of the packet size of the
Service Data Units (SDUs) and quality of service (QoS) Class
Identifier (QCI) for each DRB. Note that SDUs are packets
that carry the user payload in the radio link control (RLC)
layer. Depending on the scheduler logic employed by eNB
vendors, the DLSCH scheduler outputs are 1) modulation
coding scheme (MCS) selection; 2) size of the protocol data

unit (PDU) (PDU allocation); and 3) allocated RBGs (RBG
allocation).

We now explain how the above scheduler outputs are used
by the DLSCH data processor in every TTI. The DLSCH
data processor consists of MUX, coding and RBG mapping
functions. For each DRB, the MUX function multiplexes
SDUs into a PDU where the total size of the SDUs is limited
by the size of PDU, which is taken from PDU allocation.
Coding function is used to convert bits in PDU from the
same UE into coded symbols. The coding scheme is decided
by MCS selection. Finally, the RBG mapping function maps
coded symbols belonging to different UEs to allocated RBG
based on the information provided by the RBG allocation.
This data flow is shown in Fig. 1. Note that in both the OAI
eNB and SRS eNB, all the above components run as a single
binary file with proprietary interfaces. This means 1) the eNB
will need to be recompiled every time if the objective of the
DLSCH logic is changed, resulting in an operational outage;
and 2) a non-vendor-neutral architecture where the vendor of
scheduler must be the same with the one of the eNB.

III. THE RTVN DLSCH SCHEDULER ARCHITECTURE

The RTVN DLSCH scheduler architecture consists of a
vendor-neutral eNB and controller. In this section, we will
explain the vendor-neutral eNB and leave the explanation
about the controller to Section IV. There are three components
in the eNB: 1) a separate DLSCH scheduler to ensure the real-
time operation of ReNB; 2) a global variable that consists
of standardised input and output parameters to guarantee
vendor neutrality; and 3) an agent to manage the above two
components. The proposed architecture is shown in Fig. 2.

A. DLSCH Scheduler Separation

The DLSCH scheduler separation is achieved by moving
the embedded DLSCH scheduler out from the MAC in Fig. 1
as a shared library. The remaining eNB functions inclusive
of MAC layer functions (i.e., the eDB and DLSCH data
processor) are defined as ReNB. The shared library and ReNB
are linked by using standardised input and output parameters.
These parameters are abstracted and interpreted using an
agent that has been specifically developed for different ReNB
vendors. By so doing, the scheduler and ReNB can now be
compiled separately as two binary files and the scheduler can
be replaced without recompiling and interrupting ReNB.

B. Global Variables

We will now explain how to standardise the input and
output parameters above, collectively defined as GV, for
ReNBs from different vendors. GV stores system bandwidth,
bw, represented by the number of RBGs in a subframe. For
UEi, i = 1, · · · , n, GV contains rntii, cqii and tpi as inputs,
where n is the number of UEs in the system. rntii is the
radio network temporary identifier (RNTI). cqii is the channel
information that follows the standard wideband CQI defined
in the Third-Generation Partnership Project (3GPP) [7]. tpi is
the historical downlink throughput defined as the size of the



Controller

Compiler

Shared

library

Agent

eNB

Network

Coding

RBG mapping

MUX

DLSCH data processoreDB

fin

fout
DRB allocation

MCS selection

RBG allocation

fDLSCH

DRB allocation

Preprocessing

RBG allocation

MCS selection Shared

library

MAC in ReNB

Inputs

Output

RTVN DLSCH
scheduler

GV

GV

PDU

Coded
symbol

SDUSystem configuration: Bandwidth
Historical information: Throughput

QoS: QCI

PHY: Channel qualtiy indicator

RLC: Size of SDUs

Fig. 2. RTVN programmable scheduler architecture

TABLE I
DLSCH SCHEDULER PARAMETERS IN GV

Input list
Name Description
rntii The RNTI of UEi

cqii The CQI of UEi

sduj
i Size of SDUs of DRBj

i in byte in RLC buffer
qciji The QCI of DRBj

i

tpi The throughput of UEi in byte/TTI
bw The system bandwidth in the number of RBGs

Output list
xi The allocated RBG bit-mask of UEi

mcsi The MCS of UEi

pduj
i Size of PDU in byte DRBj

i can transmit

struct

struct

struct

struct

Input

Input

Input

Input Input

Input

Output Output Output

GV UEi

SYS bw xi mcsi pdu
j
i

qci
j
i

buf
j
i

DRB
j
i

rntii

tpi

cqii

Fig. 3. Structure of GV

PDUs measured by the number of bytes that are sent from the
RLC layer to the MAC layer in the previous TTI. For each
DRBj , j = 1, · · · , p, of UEi, DRBj

i , GV has two inputs, sduj
i

and qciji . p is the maximum number of DRB defined in 3GPP
[8]. sduj

i is the size of SDUs in number of byte that queued
in the RLC layer downlink buffer. qciji is the QCI assigned to
DRBj

i , which follows the definition in the 3GPP. All above
input parameters are summarised in the input list in Table I.
For outputs, mcsi is the MCS of UEi that is decided by the
scheduler and xi is the bit-mask of RBG allocation for UEi,
indicating the positions of the allocated RBGs. pduj

i is defined
as the size of the PDU that DRBj

i can transmit. The list of
output parameters are summarised in the output list in Table I.
We organise all parameters in Table I as a hierarchical data
structure, shown in Fig. 3.

C. Agent

To manage the GV, we develop agents for different ReNB
vendors. The agents have two functions, fin and fout. To send
the scheduling inputs to the scheduler, fin abstracts informa-
tion from vendor-specific eDB and formats this information
according to the GV, as shown in the input list in Table I.
The implementation of fin is shown in Algorithm 1. All input
information are collected from the eDB and the output is GV.
fin first initialises and configures the data structure of GV and
SYS. fin then gathers the information of UEs and the DRB
of each UE from the eDB in lines 4–13. UEi will be set as
an empty struct if it does not have downlink data to transmit
in the current TTI.

Algorithm 1: The logic of fin
Input: eDB
Output: GV

1 Initialise GV = ∅, SYS = ∅;
2 Get bw from eDB and set it to SYS;
3 Attach SYS to GV;
4 for i = 1 to n do
5 Initialise UEi = ∅;
6 if ∃sduj

i > 0 then
7 Get rntii, cqii, tpi from eDB and set them to UEi;
8 for j = 1 to p do
9 Initialise DRBj

i = ∅;
10 if sduj

i > 0 then
11 Get sduj

i , qciji from eDB and set them to
UEi;

12 Attach DRBj
i to UEi;

13 Attach UEi to GV;

14 return GV;

To control the DLSCH data processors from different
vendors, fout interprets xi, mcsi and pduj

i , shown in the
output list in Table I, into RBG allocation, MCS selection
and PDU allocation that the DLSCH data processors of ReNB
vendors can understand. The implementation of fout is shown
in Algorithm 2. With vendor-specific fin and fout run in
the agent to handle the above processes, the RTVN DLSCH
scheduler can now communicate with any vendor’s ReNB.
Note that GV, fin and fout in this paper cover the parameters
used by the DLSCH scheduler in LTE eNB only. They can
be extended to support the schedulers of other transport



channels and cell configurations (e.g. multi-input multi-output
(MIMO)) and 5G BSs by adding more parameters in GV and
expanding the functionalities of fin and fout.

Algorithm 2: The logic of fout
Input: GV
Output: RBG allocation, MCS selection and PDU allocation

1 foreach UEi do
2 if UEi ̸= ∅ then
3 Get xi from GV to generate RBG allocation;
4 Get mcsi from GV to generate MCS selection;
5 for j = 1 to p do
6 if DRBj

i ̸= ∅ then
7 Get pduj

i from GV to generate PDU
allocation;

8 return RBG allocation, MCS selection and PDU allocation;

IV. RTVN DLSCH SCHEDULER CONTROLLER

Using examples, we now explain how the DLSCH sched-
uler logic with GV serving as its interface parameters is
written at the controller for different ReNB vendors. The
logic is compiled as a shared library and sent to replace
the existing one at ReNB. It interacts with the eDB and
DLSCH data processor via GV using fin and fout. The
scheduler logic consists of four components. Pre-processing
is done first in order to calculate the number of bytes of
SDUs to be transmitted and the average throughput. It also
initialises the RBG allocation bit-mask. mcsi, xi and pduj

i are
then calculated for MCS selection, RBG allocation and PDU
allocation, respectively. The above process is shown in Fig. 2.
We refer to this scheduling function as fDLSCH. fDLSCH can
be customised according to the operator need, making the
scheduler logic programmable.

A. Pre-processing

In each TTI, the amount of transmitted data of UEi, queuei,
is calculated by fmux with sduj

i , j = 1, · · · , p as inputs.

queuei = fmux

(
sdu1

i , · · · , sdu
p
i

)
=

p∑
j=1

sduj
i . (1)

The average throughput of UEi, avgi, is calculated based on
avgi in the previous TTI, and the historical throughput, tpi,
defined in the input list in Table I. avgi is set to 0 at the
beginning,

avgi = favg (avgi, tpi) = (1− α) avgi + α× tpi (2)

where α = 0.99. Note that the bit-mask of UEi is set to 0,
xi = 0, to make sure that no RBG is allocated to any UE
before RBG allocation takes place.

B. MCS Selection

After pre-processing, mcsi is calculated for each UEi using
fmcs with cqii, defined in the input list in Table I, as an
input in lines 4–5 of Algorithm 3. In this paper, we adopt the

Algorithm 3: The logic of fDLSCH

Input: GV
Output: GV
/* Preprocessing */

1 for i = 1 to n do
2 queuei = fmux

(
sdu1

i , · · · , sdup
i

)
;

3 avgi = favg (avgi, tpi);
4 xi = 0;

/* For MCS selection */
5 for i = 1 to n do
6 mcsi = fmcs (cqii)

/* For RBG allocation */
7 for k = 1 to bw do
8 for i = 1 to n do
9 mi =

fm
(
bw,mcsi, avgi, xi, qci

1
i , · · · , qci2i , queuei

)
;

10 i′ = fa (m1, · · · ,mn);
11 xi′ = xi′ + 2k−1;

/* For PDU allocation */
12 for i = 1 to n do
13 for j = 1 to m do
14 pduj

i = fq
(
bw,mcsi, xi, qci

j
i , queuei

)
;

15 Update pduj
i to GV;

16 Update xi to GV;
17 Update mcsi to GV;

18 return GV;

mapping function between CQI and MCS used by the OAI
eNB in [9].

C. RBG Allocation

RBG allocation takes place in lines 7–11 of Algorithm 3 to
calculate xi. It consists of two functions: fm, which calculates
a utility value, mi, of UEi and fa that selects UEs to which
to allocate RBGs based on calculated utility values. fm and
fa are run iteratively to select UEs and allocate RBGs to
chosen UEs, one at a time. We will provide two examples,
referred to as PF and traffic prioritisation (TP), to explain the
RBG allocation process. For the first example, we consider a
PF scheduling where the utility value is defined as the ratio
between instantaneous throughput and average throughput.
The RBG resource will be allocated to the UE with the highest
utility value in each iteration. In the iteration k, utility values,
mi, i = 1, · · · , n, are calculated by function

mi = fPF
m (bw,mcsi, xi, avgi, queuei)

=

{
fTBS(bw,mcsi,xi)

avgi
, if fTBS (bw,mcsi, xi) < queuei

−∞, otherwise.
(3)

Here, avgi is the average throughput and fTBS (bw,mcsi, xi)
is used to calculate the instantaneous throughput. The instan-
taneous throughput is represented by the available transport
block size (TBS) in the current TTI based on the allocated
RBGs, xi, the number of RB per RBG determined by bw
and the MCS, mcsi, defined in Table I. The calculation is
achieved by following the 3GPP standard (Table 7.1.6.1-1,



Table 7.1.7.1-1 and Table 7.1.7.2.1-1 in [10]. We then use
fa to find the index, i, of the UE who has the largest utility
value. fa is defined as

i′ = fa (m1, · · · ,mn) = argmax (m1, · · · ,mn) (4)

For mi with the same value, the one that has the smaller index
will be selected. RBG k is then allocated to UEi by setting
the bit k of xi to 1. As the RBG index, k, is increased by
one in each iteration, each RBG will only be allocated to one
UE. For the second example, we consider a TP scheduling
where RBGs will be allocated to the UE with the highest
priority. We use the QCI of the first DRB, qci1i , to represent
the priority of UEi. The utility values, mi, i = 1, · · · , n, are
calculated as

mi = fTP
m

(
bw,mcsi, xi, qci

1
i , queuei

)
=

{
−qci1i , if fTBS (bw,mcsi, xi) < queuei
−∞, otherwise.

(5)

(4) then is used to find the selected UE, UEi. In this case, the
UE with the highest priority (the smallest QCI) will always
be selected, while lower-priority UEs with will be blocked.

D. DRB Allocation

DRB allocation is achieved using fq, which computes pduj
i

in lines 12–17 of Algorithm 3 to indicate how many bytes
DRBj

i can transmit in a PDU. We provide an example of fq
for a single DRB scenario. In this example, all RBG resources
are allocated to the first DRB of UEi, DRB1

i , so that DRB1
i

can transmit a PDU with a size equal to TBS. fq takes bw,
defined in the input list in Table I, mcsi, calculated during
MCS selection, and xi, calculated during RBG allocation as
inputs to calculate the TBS of UEi. fq is defined as

pdu1
i = fq (bw,mcsi, xi) = fTBS (bw,mcsi, xi) . (6)

All four components of fDLSCH presented in Sections IV-A–
IV-D are summarised in Algorithm 3.

E. The Shared Library

The shared library is written as a customised fDLSCH based
on the GV structure at the controller by network operators.
The source code of the shared library is then compiled as a
binary file. The compiler will take different CPU architec-
tures (e.g., X86 and ARM) into consideration and generate
different shared libraries accordingly from the same source
code. This enables target neutrality, meaning that the shared
library can work with multiple ReNBs built on different CPU
architectures. The shared library is sent to ReNB and used by
the agent there to replace the old in real time.

V. PROTOTYPE

We now describe the prototype development of the RTVN
programmable scheduler architecture. We create two ReNBs
by modifying the OAI eNB and SRS eNB. They are run
on dedicated computers, located in our lab. Both computers
connect to a Universal Software Radio Peripheral (USRP)
B210 via USB 3.0 at the RF end. The Evolved Packet Core

NextEPC Controller

OAI ReNB SRS ReNB

USRP B210 USRP B210

Internet

Browser

HTTP

Ethernet

USB 3.0

Wireless
Router

UE UE

Fig. 4. Experimental setup of LTE network

(EPC) (using an open source EPC from [11]) is operated on
another computer in the lab and connected to the same internal
network as the ReNBs via the Ethernet. The controller also
runs on a computer in the internal network. It is used to
provide a web-based interface for writing the RTVN DLSCH
scheduler in C and compiling the source code into a shared
library. The compiled shared library is then distributed to
ReNBs using a secure copy (SCP) protocol, where SCP is
an application layer protocol used to copy files between com-
puters. We use commercial phones as UEs in our experimental
network. The experimental network runs in LTE Band 7,
with an operating bandwidth of 10 MHz (i.e., bw = 17).
Each UE is configured to run an application that tries to
maximise the downlink throughput. The experimental LTE
network deployed in our lab is shown in Fig. 4

A. The RTVN DLSCH Scheduler for Different ReNB Vendors

The first experiment we run demonstrates vendor neutrality.
In this experiment, we consider vendor neutrality to have
been achieved when the OAI and SRS ReNBs have the same
downlink throughput when the same scheduler is used. We
assume there are two UEs, attached to each ReNB. Each UE
uses one DRB and is configured with different priorities. For
each ReNB, UE1 has qci11 = 8 as a high-priority UE and UE2

has qci12 = 9 as a low-priority UE. Two UEs are placed in
different locations so that UE1 has worse channel quality with
measured CQI, cqi1 = 10, and UE2 has better channel quality
with measured CQI, cqi2 = 15. The experimental results are
shown in Fig. 5. In the first 5000 TTIs, we run PF scheduling
using (3) and (4) as fm and fa in fDLSCH. Both ReNBs
provide UE2 with a higher throughput due to the higher CQI,
which results in better spectrum efficiency and more allocated
resources. The scheduling function update is triggered to run
TP at TTI=5000 by using (5) and (4) as fm and fa in
fDLSCH. In that case, for both ReNBs only UE1 has downlink
traffic due to a higher priority. The throughput difference
between OAI ReNB and SRS ReNB is due to the different
control format indicator (CFI) configurations. In SRS ReNB,
CFI is fixed at 3, which means the first three orthogonal
frequency-division multiplexing (OFDM) symbols in each
subframe are used for the control channel, regardless of the
amount of downlink control information (DCI). While in OAI
ReNB, CFI configuration is dynamic depending on the traffic
demand. With only two UEs, a smaller CFI configuration



0.5 1 1.5 2 2.5

TTI 104

0

5

10

15

20

25

M
bp

s

OAI UE 1
OAI UE 2
SRS UE 1
SRS UE 2

4900 5000 5100 5200 5300 5400 5500
5

10

15

~300 ms

Scheduling logic
update triggered

New scheduler
takes effect

Fig. 5. Throughput of different schedulers in RTVN architecture

0.5 1 1.5 2 2.5

TTI 104

0

5

10

15

20

25

M
bp

s

~18 s
UE 1
UE 2

Scheduling logic
update triggered

New scheduler
takes effect

UE disconnected

Fig. 6. Throughput of different schedulers in FlexRAN [1]

value is sufficient to carry all DCI; thus, more resources can
be used to transmit the UE payload.

B. Real-Time Scheduling

The second experiment demonstrates real-time programma-
bility by comparing the scheduling latency between our
RTVN architecture to a state-of-the-art experimental em-
bedded scheduler architecture, FlexRAN [1]. The latency is
defined as the time taken between triggering a new logic to
running the new logic at the eNB. The same setup as used in
Section V-A is used for FlexRAN. The experimental results
of FlexRAN are shown in Fig. 6. FlexRAN takes about 18s to
recompile and re-starting the eNB after the new logic is trig-
gered at TTI=5000. During the re-start process, the operation
of eNB is terminated so that the UEs are disconnected and do
not receive any traffic. For RTVN, as shown in Fig. 5 before
the new scheduler is run the original PF continues to run
and maintains the UE connections. The latency is about 300
ms for the shared library’s compilation and distribution. Note
that, for SRS ReNB, the latency is slightly longer because
we send the shared library to the ReNBs one by one. This
latency can be further reduced by optimising the compilation
process and using faster transmission protocols.

VI. CONCLUSION

In this paper, we address the challenge of programming
the scheduler in multi-vendor cellular networks by proposing
a real-time vendor-neutral programmable architecture and
implementing it for both the OAI eNB and SRS eNB. The
proposed architecture separates the embedded DLSCH sched-
uler from eNB and eliminates proprietary interfaces. This
allows the RTVN DLSCH scheduler to be programmed in a
vendor-neutral manner and in real time at the controller. The
experimental prototyping activities have shown that the pro-
posed architecture provides a high degree of programmability
in scheduler logic and allows operators to apply customised
strategies according to their needs in real time.

ACKNOWLEDGEMENT

This project, titled ”Development of an Open Pro-
grammable Scheduler for LTE Networks” is directly funded
by Telstra Corporation Ltd. and supported by an Australian
Research Council Discovery Early Career Research Award
(DE150101704). It is also partially supported by an Aus-
tralian Research Council Laureate Fellowship grant number
FL160100032. The support provided by University of Syd-
ney International Scholarship (USydIS) of Wenhao Zhang is
acknowledged.

REFERENCES

[1] X. Foukas, N. Nikaein, M. M. Kassem, M. K. Marina, and K. Konto-
vasilis, “FlexRAN: A flexible and programmable platform for software-
defined radio access networks,” in Proceedings of the 12th International
on Conference on emerging Networking EXperiments and Technologies.
ACM, 2016, pp. 427–441.

[2] F. Kaltenberger, C. Roux, M. Buczkowski, and M. Wewior, “The
openairinterface application programming interface for schedulers using
carrier aggregation,” in 2016 International Symposium on Wireless
Communication Systems (ISWCS). IEEE, 2016, pp. 497–500.

[3] L. Gavrilovska, V. Rakovic, and D. Denkovski, “Aspects of resource
scaling in 5g-mec: Technologies and opportunities,” in 2018 IEEE
Globecom Workshops (GC Wkshps). IEEE, 2018, pp. 1–6.

[4] N. Nikaein, M. K. Marina, S. Manickam, A. Dawson, R. Knopp, and
C. Bonnet, “OpenAirInterface: A flexible platform for 5G research,”
ACM SIGCOMM Computer Communication Review, vol. 44, no. 5, pp.
33–38, 2014.

[5] I. Gomez-Miguelez, A. Garcia-Saavedra, P. D. Sutton, P. Serrano,
C. Cano, and D. J. Leith, “srsLTE: an open-source platform for LTE
evolution and experimentation,” in Proceedings of the Tenth ACM
International Workshop on Wireless Network Testbeds, Experimental
Evaluation, and Characterization. ACM, 2016, pp. 25–32.

[6] O-RAN Alliance , “O-RAN Architecture,” 2018. [Online]. Available:
https://www.o-ran.org/

[7] Evolved Universal Terrestrial Radio Access (E-UTRA), “Policy and
charging control architecture (3GPP TS 23.203 version 8.9.0 Release
8),” ETSI, Standard, vol. 8, no. 9, 2010.

[8] ——, “Radio resource control (RRC) (3GPP TS 36.331 version 8.6.0
Release 8),” ETSI, Standard, vol. 8, no. 6, 2009.

[9] OpenAirInterface, 2018. [Online]. Available: https://gitlab.eurecom.fr/
oai/openairinterface5g/blob/master/openair1/PHY/phy vars.h

[10] Evolved Universal Terrestrial Radio Access (E-UTRA), “Physical layer
procedures (3GPP TS 36.213 version 8.6.0 Release 8),” ETSI, Standard,
vol. 8, no. 6, 2009.

[11] S. Lee, J. Park, and J. B. Lee, “NextEPC,” 2018. [Online]. Available:
http://nextepc.org/


