
A Distributed Real-Time Programmable Scheduler Architecture
For Cellular Networks

Zhouyou Gu
The University of Sydney

zhouyou.gu@sydney.edu.au

Wibowo Hardjawana
The University of Sydney

wibowo.hardjawana@sydney.edu.au

Wenhao Zhang
The University of Sydney

wenhao.zhang@sydney.edu.au

Dawei Tan
The University of Sydney
dawei.tan@sydney.edu.au

Branka Vucetic
The University of Sydney

branka.vucetic@sydney.edu.au

Simon Lumb
Telstra Corporation Ltd.

simon.lumb@team.telstra.com

David McKechnie
Telstra Corporation Ltd.

david.mckechnie@team.telstra.com

Todd Essery
Telstra Corporation Ltd.

todd.essery@team.telstra.com

ABSTRACT
Two types of cellular network scheduler architectures have been
proposed in the open literature: 1) a distributed scheduler with
non-programmable logic for network operators due to tight control
by the evolved NodeB (eNodeB) vendor at the edge base station
(BS), and 2) a centralized scheduler with only non-real-time sched-
uling logic that is programmable. We propose a new distributed
real-time programmable scheduler architecture. We refer to a real-
time scheduler as one with logic running every transmission time
interval (TTI). The scheduling logic is written independently of
the underlying eNodeB software and executed in real-time at the
edge BS with the help of a scheduler agent. The proposed architec-
ture is validated in an over-the-air environment with commercial
long-term evolution (LTE) devices and 3rd Generation Partnership
Project (3GPP) standards-compliant setup.

CCS CONCEPTS
• Networks→ Programmable networks;Mobile networks;

KEYWORDS
Real-time, Programmable scheduler, Cellular Network

1 INTRODUCTION
Various traffic classes in current and future cellular networks, like
enhanced Mobile Broadband (eMBB), massive Machine Type Com-
munications (mMTC) and ultra Reliable Low Latency Communica-
tions (uRLLC), have flexible requirements in terms of bandwidth,
latency and reliability that vary over time [10]. As a consequence,
cellular network operators will need to have a high degree of pro-
grammability in the radio resource-scheduling logic for the current
and future base station (BS), referred to as evolved NodeB (eNodeB)
or next generation NodeB (gNodeB) in long-term evolution (LTE)
and 5G networks [3], to program the scheduler according to the
changes in traffic classes and network conditions.

The current implementation of the eNodeB scheduler can be
classified into two categories. The first category is a distributed
non-programmable scheduler architecture normally used in com-
mercial cellular networks, shown in Fig. 1a. Whilst there are con-
trols available to network operators to influence the behaviour of

Edge BS

Controller
Scheduler Parameters

Scheduler
eNodeB

(a)

Edge BS

Controller

eNodeB

Scheduler

(b)

Edge BS
Scheduler Agent

eNodeB

Controller
Scheduling Function Logic

(c)

Figure 1: (a) Distributed non-programmable; (b) centralized
programmable; and (c) distributed programmable scheduler
architectures.

the scheduling logic to implement quality of service (QoS) by chang-
ing its parameters (such as priorities, minimum bit-rates, packet
delay budgets etc.), the underlying real-time scheduling logic is
tightly integrated into the rest of the eNodeB software at the edge
BS. This limits the flexibility of a network operator to implement
or procure customized logic to meet their requirements. This in-
tegrated architecture provides the benefits of 1) an uninterrupted
operation of eNodeB even when the controller fails; 2) real-time
scheduling every transmission time interval (TTI). The second cat-
egory is a recently proposed centralized programmable scheduler
architecture, referred to as FlexRAN [6, 7, 12], shown in Fig. 1b.
Here the scheduler is first separated from eNodeB. The information
exchange between eNodeB and the scheduler is using an inter-
face based on Femto Forum Scheduler Application Programming
Interface (FAPI) [5]. FAPI has been considered as a standard for
interfacing a scheduler with any eNodeB. The scheduler is then
moved from eNodeB at the edge BS to the controller, allowing op-
erators to change the logic of the scheduler as they like. There
are two issues with this approach; 1) eNodeB failure occurs when
the controller fails; and 2) latency exceeding one TTI between the
scheduler and eNodeB, prevents the scheduling logic from running
at every TTI which we define as real-time scheduling. To prevent
these issues, other centralized approaches such as the current in-
dustry initiatives Open RAN Alliance (O-RAN) [13] and SoftRAN
[9] have only to date considered the non-real-time features of the
scheduler to be programmable at the controller. No architecture in
the commercial or open literature allows operators to program the
real-time radio resource scheduler.

ACM SIGCOMM Computer Communication Review

eNodeB

Scheduler

Information database
FAPI

PDSCH and PDCCH
scheduling for

BCH,PCH,RAR,HARQreTx

PDSCH and PDCCH
scheduling for
downlink LDC

MCS selection for
PDSCHPDCCH configuration PDCCH scheduling for

uplink

Data plane

Figure 2: The scheduler architecture in srsENB.

In this paper, we propose a distributed real-time programmable
scheduler architecture that will enable radio resource scheduling
programmability in the physical downlink shared channel (PDSCH)
and physical downlink control channel (PDCCH) for downlink
logic data channels (LDCs), shown in Fig. 1c. Note that PDSCH
and PDCCH are the physical radio resources arranged in order of
time and frequency that transmit downlink data and control infor-
mation to user equipment (UE) in LTE networks. An open-source
eNodeB software from Software Radio Systems (SRS), referred to
as srsENB [8], is used to implement the proposed architecture. The
main contributions of the paper are as follows. Firstly, we believe
this is the first architecture that allows network operators to rewrite
scheduling logic at the controller and that uses a scheduler agent
at the edge BS to execute that logic in real-time every TTI. To
date, the most advanced centralized programmable architecture
[7], as shown in our experiments, struggles to work in real-time
due to a communication latency between the scheduler and eN-
odeB that exceeds multiple TTIs. Secondly, the agent incorporates
new parameters on radio resource frame configurations when in-
terfacing the scheduler to the eNodeB. These parameters have not
been used in any scheduler interface standards such as FAPI [5]. In
the current FAPI implementation, the scheduler needs to calculate
these parameters, resulting in more information exchange between
scheduler and eNodeB and a complex scheduler design. Inclusion
of these parameters into FAPI are recommended. Thirdly, we de-
velop a prototype for the above architecture and provide examples
how to create scheduling functions to control traffic priority and
to slice radio resources for the downlink LDC at the controller in
over-the-air environments with commercial LTE devices and an
LTE standards-compliant setup, referred to as an experimental LTE
network. The prototype is built on top of the open-source eNodeB
and evolved packet core (EPC) software from [8], referred to as
srsENB and srsEPC, and software-defined radio (SDR) hardware
from National Instruments [15]. Experimental results show the
benefit of our distributed real-time programmable radio resource
scheduler for operators by being able to customize real-time sched-
uling strategies through programmable logic in cellular networks.
Note that the purpose of these experiments is not to benchmark the
performance of our implemented algorithms against other imple-
mentations but rather to demonstrate that custom-made strategies
can be implemented in the proposed architecture.

2 SCHEDULER ARCHITECTURE IN SRSENB
In this section, we first explain the scheduler architecture of srsENB
[8] that will be used to develop our proposed distributed pro-
grammable scheduler architecture in Section 3. The schematic is
shown in Fig. 2. srsENB has the following configurations: 1) re-
source allocation type 0 in which multiple resource blocks (RBs),

each consisting of multiple resource elements (REs), are allocated
as resource block groups (RBGs) and the total number of RBGs de-
pends on the operating bandwidth; 2) a single-input-single-output
(SISO) transmission mode; 3) each UE has one downlink LDC. The
scheduler takes FAPI-compliance inputs from the information data-
base in srsENB. The database stores the information and measure-
ments reported by UEs, EPC and from srsENB itself. These range
from a radio network temporary identifier (RNTI) (identifies UEs),
QoS class identifier (QCI) to classify the downlink LDC set up for
the UE, operating bandwidth, channel quality indicator (CQI) to
indicate the achievable spectral efficiency, and the amount of data
queued in each downlink LDC every TTI.

At the beginning of every TTI, the scheduler sets the value of the
control format indicator (CFI) that specifies the format of PDCCH in
the PDCCH configuration function block. Based on the configured
CFI, the PDCCH configuration function block returns the candidate
list of possible radio resources to be used to transmit downlink
control information (DCI) to the UEs. These resources in PDCCH
and the candidate list are referred to as control channel element
(CCE) and PDCCH candidates (PCs). The PDCCH configuration
function block also returns the number of resources left for the
downlink data. In the next block, the scheduler in srsENB allocates
the resources in PDSCH and PDCCH for the purpose of transmitting
multiple downlink data types and their DCIs in PDCCH according to
the following data type sequences: broadcast control channel (BCH),
paging control channel (PCH), random access response (RAR) and
hybrid automatic repeat request retransmission (HARQreTx).

UEswith data to transmit in their downlink LDCs to be scheduled
are allocated with PDSCH resources in ascending order of RNTIs in
this TTI. The process is repeated in the next TTI in a round-robin
fashion, until all UEs have been scheduled. The modulation and
coding schemes (MCSs) for the downlink data in PDSCH are then
selected based on the spectrum efficiency indicated by reported
CQI [8]. Finally in the last scheduler block, srsENB allocates the
resources in PDCCH for transmitting control information that indi-
cates the setup for uplink transmission by UEs. Note the limitation
in srsENB [8] when the control information for the uplink is allo-
cated last. If there are not enough PDCCH resources reserved for
the uplink, there is a risk of uplink starvation. Uplink starvation
happens when all available PDCCH resources are fully used for
downlink transmissions. As a consequence, the control information
to schedule uplink tranmissions for UEs cannot be transmitted by
srsENB. Once the scheduling is completed for each TTI, the sched-
uler sends the scheduling allocation for all data types to the data
plane with a format that complies with FAPI, which then maps the
data into the radio frame and transmits the frame over the air.

ACM SIGCOMM Computer Communication Review Volume 48 Issue 1, January 2018

eNodeB

Scheduler

MCS selection for
PDSCH

PDSCH and PDCCH
scheduling for

BCH,PCH,RAR, HARQreTx

Scheduler Agent
1.Get UE_MAP, G, A, RAhTx

2. Execute f
3. Output RALDC

Data planeInformation database
FAPI

PDSCH and PDCCH scheduling function for downlink LDC, f
RALDC = f (UE_MAP, G, A, RAhTx)

File F

PDCCH configuration PDCCH scheduling for
uplink

Controller

Figure 3: Distributed programmable scheduler architecture in srsENB.

3 DISTRIBUTED PROGRAMMABLE
ARCHITECTURE

In this section, we modify srsENB in order to develop a distributed
programmable scheduler architecture in srsENB. The developed
architecture in srsENB is shown in Fig. 3. This architecture sep-
arates the function block of PDSCH and PDCCH scheduling for
the downlink LDC described in Section II and keeps the remaining
srsENB blocks intact. Note that this architecture can be extended
to separate other scheduling functions in srsENB. There are two
components in the proposed architecture; 1) the separated function
denoted as f that is written at the controller and distributed as
a file F to srsENB at the edge BS; and 2) a scheduler agent that
abstracts input/output parameters for f and executes the logic of f
for every TTI at the edge BS. The agent is inserted between PDSCH
and PDCCH scheduling (for BCH, PCH, RAR and HARQreTx) and
MCS selection (for PDSCH) in Fig. 3. These two components will be
described in detail in the following sections. We define the down-
link data types to be transmitted (described in Section II) as a list
D = {BCH, PCH,RAR,HARQreTx, LDC}.

3.1 Scheduler agent in proposed architecture
The scheduler agent creates a list of information about UE 1, . . . ,N ,
UE_MAP = {UE1, . . . ,UEi , . . . ,UEN }, obtained from the infor-
mation database and the PDCCH configuration function block.
UEi , in UE_MAP, is a data structure with the information fields
{RNTIi ,QCIi ,CQIi , li , PCsi }. RNTIi is the RNTI of UEi . CQIi is the
indicated achievable spectrum efficiency of UEi . li is the amount
of data queuing in the downlink LDC of UEi . QCIi is QoS infor-
mation attached to the downlink LDC of UEi , assigned by EPC.
PCsi is a list that contains Pi PDCCH candidates of UEi . PCsi =
{PCi,1, . . . , PCi,Pi }where PCi,p is the CCE configurationp in PCsi .
Each PCi,p is denoted as PCi,p = {ALi,p , I_CCEi,p }. ALi,p is the ag-
gregation level of PCi,p . It denotes the number of consecutive CCEs
used in PCi,p , calculated as 2(ALi,p−1), where ALi,p ∈ {1, . . . , 4} as
defined in 3rd Generation Partnership Project (3GPP) [2]. I_CCEi,p
is the index of the first CCE of PCi,p . The agent gets RNTIi , QCIi ,
CQIi , and li of each UEi from the information database, and PCsi
from PDCCH configuration function block. The agent abstracts
the total number of RBGs and the numbers of REs in each RBG as
G and A = {RE1, . . . ,REG }. REn is the number of REs in RBG n
calculated in PDCCH configuration.

We now explain how the scheduler allocates radio resources
for multiple types of downlink data, denoted by D. The agent
first gets PDCCH and PDSCH resource allocations for UEs that
will receive transmissions of data type t ∈ D, t , LDC, PDSCH

and PDCCH scheduling for BCH, PCH, RAR, HARQreTx block of
srsENB. This information is collected as a list by the agent defined as
RAhTx = {UEhTxi , . . . ,UE

hTx
N hTx }, where UEhTxi = {RNTIhTxi ,X

hTx
i ,

PChTx
i } stores the information on RNTIhTxi ,the RBG bit-mask,XhTx

i ,
and possible CCE configurations, PChTx

i , of UE i in the list. XhTx
i =

{xhTxi,1 , . . . ,x
hTx
i,G } is the allocated RBG bit-mask of UE i in the list.

xhTxi,n = 1 if RBG n is allocated to UE i in RAhTx list, else xhTxi,n =

0. PChTx
i = {ALhTxi , I_CCE

hTx
i } indicates the aggregation level

and the index of the first CCE of UE i in RAhTx. RAhTx is then
used as inputs for the separated function f for calculating the re-
maining PDSCH and PDCCH radio resources for the downlink
LDC. f outputs the allocated resources in a format of RALDC =
{UELDCi , . . . ,UELDC

N LDC } where UELDCi = {RNTILDCi ,XLDC
i , PCLDC

i }.
RNTILDCi is the RNTI of UE i in RALDC.XLDC

i = {xLDCi,1 , . . . ,x
LDC
i,G }

is the allocated RBG bit-mask used to transmit the downlink LDC
of UE i . xLDCi,n is a binary number indicating the allocation of RBG
n to UE i in RALDC. If RBG n is allocated, xLDCi,n = 1; otherwise,
xLDCi,n = 0. PCLDC

i = {ALLDCi , I_CCELDCi } are the aggregation level
and the index of the first CCE of UE i in RALDC. The list of sched-
uling parameters used by the agent is shown in Table 1. Note that
Table 1 can be extended easily to include additional parameters for
5G New Radio (NR) since it has the same fundamental frame and
data plane structure as LTE [1, 2].

We now define the 3GPP constraints on resource allocation. The
first one is that the same UE cannot be scheduled for both the
higher-priority data and the transmission of the downlink LDC in
one TTI. Mathematically this can be written as

RNTILDCi , RNTIhTxj (1)

where RNTILDCi ∈ {RNTI1, . . . ,RNTIN } for i = 1, . . . ,N LDC, j =
1, . . . ,N hTx. N hTx and N LDC denote the number of UEs in RAhTx

and RALDC , respectively. The second constraint is that a RBG is
available to downlink LDC only when it has not been allocated to
high priority data types. By denoting the availability of RBG n for
downlink LDCs with a binary;

RBGn =

{
0, if ∃ xhTxi,n = 1, i = 1, . . . ,N hTx ,

1, otherwise .
(2)

The third constraints is that the available RBG cannot be allocated
to multiple UEs in RALDC,

N LDC∑
i=1

xLDCi,n ≤ RBGn . (3)

ACM SIGCOMM Computer Communication Review Volume 48 Issue 1, January 2018

Table 1: Scheduling Parameter Abstraction for Agent

Inputs
Name Description

UE_MAP The list of UE information.
UEi The information of UE i in UE_MAP.
RNTIi The RNTI of UEi .
QCIi The QCI of UEi .
CQIi The spectrum efficiency of UEi .
li The amount of data queued of UEi .

PCsi The possible CCE configurations of UEi .
PCi,p The CCE configuration p in PCsi .
ALi,p The aggregation level of PCi,p .
I_CCEi the index of the first CCE of PCi,p .

G The total number of RBGs in the bandwidth.
A The list of the number of REs per RBG.

REn The number of REs of RBG n in A.
RAhTx The resource allocation for high-priority data
UEhTxi The resource allocation for UE i in RAhTx

RNTIhTxi The RNTI of UEhTxi in RAhTx.
XhTx
i The allocated RBG bit-mask of UEhTxi in RAhTx.

xhTxi,n The binary indicator for RBG n of XhTx
i .

PChTx
i The CCE configuration of UEhTxi in RAhTx.

ALhTxi The aggregation level of PChTx
i .

I_CCEhTxi the index of the first CCE of PChTx
i .

Outputs
Name Description
RALDC The resource allocation for LDC
UELDCi The resource allocation for UE i in RALDC

RNTILDCi The RNTI of UELDCi in RALDC.
XLDC
i The allocated RBG bit-mask of UELDCi in RALDC.

xLDCi,n The binary indicator for RBG n of XLDC
i .

PCLDC
i The CCE configuration of UELDCi in RALDC.

ALLDCi The aggregation level of PCLDC
i .

I_CCELDCi the index of the first CCE of PCLDC
i .

Lastly, one CCE cannot be used by multiple UEs or data types,

{I_CCEt1i , . . . , I_CCE
t1
i + 2

ALt1i −1 − 1}⋂
{I_CCEt2j , . . . , I_CCE

t2
j + 2

ALt2j −1
− 1} = ∅ , (t1, i) , (t2, j) ,

(4)
where t1, t2 ∈ {hTx, LDC}, i = 1, . . . ,N t1 and j = 1, . . . ,N t2 .

3.2 Separated scheduling function
The separated scheduling function, f , is written at the controller
and integrated by the scheduler agent as RALDC = f (UE_MAP,G,
A,RAhTx). UE_MAP,G ,A and RAhTx are the inputs of f and RALDC

is the output of f . f consists of four cascaded functions, fin, fpdsch,
fpdcch and fout, all of which are stored in one file, F, shown in Fig.
4 and explained below. fin, shown in Algorithm 1, is first run with
UE_MAP, G, and RAhTx as inputs and UE_MAP, д and RALDC as
outputs. fin first excludes UEs that has been scheduled by srsENB

File F RALDC = f (UE_MAP, G, A, RAhTx)
fin foutfpdcchfpdsch

Figure 4: The separated scheduling function, f , in File F

Algorithm 1 The logic of fin.

Input UE_MAP, G , RAhTx ; Output UE_MAP, д, RALDC .
1: create RALDC = ∅.
2: for i from 1 to N do
3: add UELDCi with RNTILDCi = RNTIi into RALDC .
4: end for
5: for i from 1 to N hTx do
6: remove UELDCj with RNTILDCj = RNTIhTxi from RALDC .
7: remove UEj with RNTIj = RNTIhTxi from UE_MAP.
8: end for
9: for n from 1 to G do calculate RBGn by using (2).
10: create д = {RBG1, . . . , RBGG }.

Algorithm 2 The logic of fout.
Input RALDC ; Output RALDC .

1: for i from 1 to N LDC do
2: if

∑G
n=1 x

LDC
i,n = 0 then remove UELDCi from RALDC .

3: end for

for other downlink higher-priority data types according to (1), as
shown in lines 1-8. This is done by creating RALDC that contains
all UEs in UE_MAP. We remove UEs whose RNTI is listed in RAhTx

from RALDC and UE_MAP. fin then estimates the availability of
RBGs for LDC by using (2) and creates the bit-mask to indicate the
available RBGs as д = {RBG1, . . . ,RBGG } in lines 9-10.

The functions fpdsch and fpdcch are then used to run the sched-
uler logic of PDSCH and PDCCH for the downlink LDC. fpdsch takes
UE_MAP, д, A and RALDC as the inputs and overwrites RALDC as
the output. fpdcch takes UE_MAP, RAhTx and RALDC as the inputs
and overwrites CCE allocations of the UEs in RALDC as the out-
put. Note that the allocations in fpdsch and fpdcch must satisfy the
constraints defined in (3) and (4). We show examples on program-
ming fpdsch and fpdcch according to the operator’s need in Section
5. Finally, fout takes RALDC as the input and returns RALDC as the
output in which UEs with no RBG allocated are excluded, as shown
in Algorithm 2, lines 1-3. Note that the programmability of the
scheduling logic can be extended to other blocks in Fig. 3 and/or to
5G NR features by identifying relevant scheduling parameters and
writing the logic in f .

4 COMPARISONWITH FAPI
The scheduling parameters in Table 1 except PCsi and REn are also
defined in the FAPI. Thus to get PCsi and REn , an FAPI agent needs
to provide additional information such as cyclic prefixes, radio
frame indexes and HARQreTx feedback channels to the separated
scheduling function shown in Fig. 3. In our scheme, however, the
agent directly abstracts scheduling parameters, PCsi and REn , for
the separated function’s inputs. This reduces scheduling parame-
ter exchange between the scheduling function and the agent and
therefore simplifies its logic design as compared to FAPI-based one.

ACM SIGCOMM Computer Communication Review Volume 48 Issue 1, January 2018

Ethernet

USB3.0

Edge BS

USRP B210 Amarisoft UE Emulator

1.Write f in F
2.Send F

USRP B210

3. Integrate F

EPC

Controller

Internet

Figure 5: The experimental implementation.

Algorithm 3 fpdsch for traffic prioritization.

Input UE_MAP, д, A, RALDC ; Output RALDC .
1: create indexes1 = {i | QCIi = 1} and indexes2 = {i | QCIi = 2}.
2: set n = 1.
3: for k from 1 to 2 do
4: set i as the element at the start of indexesk .
5: while n ≤ G do
6: if RBGn = 0 then set n = n + 1 and Continue
7: if li > 0 thenet xLDC

i,n = 1, li = li − CQIiREn and n = n + 1.
8: go to the next i in indexesk
9: if all UEs in Class k has been scheduled then Break
10: end while
11: end for

Algorithm 4 fpdcch for traffic prioritization.

Input UE_MAP, RAhTx , RALDC ; Output RALDC .
1: create indexes1 = {i | QCIi = 1 and

∑G
n=1 xi,n > 0}.

2: create indexes2 = {i | QCIi = 2 and
∑G
n=1 xi,n > 0}.

3: for k from 1 to 2 do
4: for i in indexesk do
5: for p from 1 to Pi do
6: if PCi,p satisfies (4) then set PCi = PCi,p and Break
7: end for
8: if no PCi,p in PCsi satisfies (4) then set X LDC

i with all 0.
9: end for
10: end for

5 PROTOTYPE
We now describe the implementation of the proposed distributed
programmable scheduler architecture (DPSA) in the experimen-
tal LTE networks. The purpose of experiments in this section is to
show that different real-time scheduling algorithms can be achieved
in the proposed architecture. We compare scheduling algorithms
implemented in the proposed architecture with algorithms imple-
mented in two other systems, a non-QoS aware distributed non-
programmable scheduler architecture (DNSA) represented by un-
modified srsENB [8] and the centralized programmable scheduler
architecture (CPSA) proposed in FlexRAN [7]. The time required for
information exchange between the scheduler and srsENB, referred
to as communication latency and the downlink throughputs for
various also configurations are measured in experiments.

The experiment deployed in our lab is shown in Fig. 5. We create
an edge BS by running srsENB on a computer located in our lab.
It has a USB 3.0 connection to a Universal Software Radio Periph-
eral (USRP) B210 RF front-end [15], used to convert I/Q samples
generated by srsENB into an RF signal. The open-source EPC [8] is
operated on another computer and is connected to the edge BS via
an Ethernet link. The controller runs on a computer at a different

location, outside our lab. It communicates with the edge BS over
the Internet. We use UE emulators [4] to replicate multiple UEs on
a computer with a USRP B210. The experimental LTE network runs
in Band 7 with an operating bandwidth of 10MHz (e.g.,G = 17) and
CFI = 3. Each UE is assumed to have an application with a fixed
5Mbps best-effort UDP traffic. The packet size is fixed as 1300 bytes.
In the controller, the operator writes the codes for f described in
Section 3.2 using the C++ programming language and stores it in
the file F. F is then distributed to the edge BS using git protocol
[14]. At the edge BS, the scheduler agent integrates F into srsENB.

5.1 Traffic prioritization example
Let us assume that we have UEs 1, . . . ,N in the experimental net-
work. The operator now decides that the traffic for UEs indexed by
odd numbers is more important than that indexed by even num-
bers, leading to two traffic classes. QCIi = 1, where i is a set of UEs
indexed by odd numbers, is set to indicate higher priority. The rest
of the UEs are assigned with QCIi = 2, where i denotes the UEs
indexed with even numbers. We run experiments with the different
numbers of UEs, N = 2, 4, 6, 8, 10. The operator will need to repro-
gram f at the controller in order to recognize new traffic classes; it
cannot be done in a non-programmable scheduler in today’s eN-
odeB. An example of how to write PDSCH and PDCCH functions,
fpdsch and fpdcch at the controller, is shown in Algorithms 3 and 4.

In fpdsch, the indexes of UEs in UE_MAP are separated into two
class lists based on their QCI values, as shown in line 1 of Algorithm
3. fpdsch allocates the available RBGs to the UEs in Class 1 that have
the higher priority in every TTI. This RBG allocation is done in two
steps executed inside the while loop of Algorithm 3 to satisfy (3). We
first check whether RBGs can be allocated to a downlink LDC; if not,
we move to the next one, as shown in line 6. We then allocate the
available RBG by setting its bit-mask to UEs with data to transmit
in the downlink LDC, as shown in lines 7-10. The amount of data
of UEs is calculated by subtracting the amount of data transmitted
on the allocated RBG from the queue size of the UE. The amount
of data transmitted on the RBG is calculated by multiplying the
spectrum efficiency of the UE with the number of REs on this RBG.
If all UEs in Class 1 have been scheduled, fpdsch will move to Class
2 and will repeat the same process, as shown in line 11.

We then program fpdcch. It first classifies the UEs by separating
the UEs, scheduled by fpdsch in RALDC, into Class 1 and 2 based on
their QCIs, as shown in lines 1-2 of Algorithm 4. Starting from Class
1 (which has the higher priority), the CCE configuration satisfying
(4) will be searched for every UE, as shown in lines 3-5. Once CCE
configurations have been found, the UE will be allocated with this
configuration, as shown in line 6. Else the transmission of the UE
will be dropped by setting its RBG bit-mask as 0, as shown in line
8. The same process is repeated for Class 2.

Fig. 6 compares the average UE throughputs in DPSA and DNSA
[8]. When the number of UEs, N , is small, the average UE through-
puts in both architectures are 5 Mbps. When N increases, the aver-
age UE throughput of Class 1 in DPSA remains at 5 Mbps, while
the throughputs of Class 2 in DPSA decrease significantly. This is
because the capacity of the network cannot deliver 5 Mbps for every
UE and the programmed scheduling functions in DPSA will priori-
tize UEs in Class 1, resulting in too little resources being allocated

ACM SIGCOMM Computer Communication Review Volume 48 Issue 1, January 2018

2 4 6 8 10

0

1

2

3

4

5

6

0

1

2

3

4

5

6

7

8

9

Figure 6: Traffic prioritization example.

2 4 6 8 10

0

1

2

3

4

5

6

0

1

2

3

4

5

6

7

8

9

Figure 7: Resource slicing example.

to Class 2. Compared to the DNSA, the high degree of real-time
programmability in DPSA results in 60% more throughput to the
UEs in Class 1 when N is large. Fig. 6 also compares the communi-
cation latency in DPSA with the one in CPSA [7], which are around
8 TTIs and 0.05 TTI (e.g., 8 and 0.05 msec), regardless the number
of UEs. For the scheduler to run in real-time, a latency of less than
1 TTI is compulsory, achieved only by using our proposed DPSA.

5.2 Resource slicing example
Let us assume that Class 1 and 2 in the experimental network de-
scribed before represents two different verticals with high and low
data rate requirements. The operator now wants to slice RBGs to
satisfy different QoS of the two verticals. Note that Next Generation
Mobile Network (NGMN) defines slicing as running multiple verti-
cal networks in parallel in a share resource [11]. This can be done
by reserving exclusive RBGs, 2/3, to Class 1 and the less remain-
der, 1/3, to Class 2. We assume that the proportion of the RBGs
reserved for Class k is Rk , and R1 = 2/3 and R2 = 1/3 for Class 1
and 2, respectively. fpdsch is then reprogrammed to slice RBGs for
different classes by replacing line 5 of Algorithm 3 with

while n ≤ G andWk < round(RkG) do . (5)

The number of RBGs allocated to Class K is denoted asWk and
round(RkG) is a function to round the maximum allocated RBGs
for Class k to the nearest integer. For PDCCH scheduling, we use
the same algorithm as shown in Algorithm 4.

Fig. 7 compares the average UE throughputs in DPSA and DNSA
[8]. When the number of UEs, N , is small, the average UE through-
puts in both architectures are 5 Mbps. When N increases to 10, the
average UE throughput of Class 1 drops to 4Mbps. This is because
UEs in Class 1 can only use 2/3 of available RBGs. Compared to the
DNSA, the high degree of programmability of the DPSA results in
30% more throughput going to the UEs in Class 1 when N is large.
By using the proposed DPSA, we can program scheduling function
logic as we like. Similar communication latency behaviour as in
Section 5.1 are observed in Fig. 7.

6 CONCLUSION
In this paper, we address the challenge of programming the sched-
uler in a cellular network by proposing a distributed programmable
architecture and implementing it in srsENB [8]. The proposed archi-
tecture separates the PDSCH and PDCCH scheduling functions for
the downlink LDC from the srsENB scheduler. This allows the codes
of the separated scheduling function to be written independently
of the underlying eNodeB and executed in real-time at the edge BS.
The prototyping activities in the experimental LTE network have
shown that the proposed architecture provides a high degree of
programmability in the scheduling logic and allows the operator to
apply real-time customized strategies according to their needs.

ACKNOWLEDGMENT
This project is directly funded by Telstra Corporation Ltd. and
supported by Australian Research Council Discovery Early Career
Research Award (DE150101704).

REFERENCES
[1] 3GPP. 2017. Physical layer; General description. Technical Specification (TS)

38.201. 3GPP. Version 15.0.0.
[2] 3GPP. 2018. Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer

procedures. Technical Specification (TS) 36.213. v15.2.0.
[3] 3GPP. 2019. The 3rd Generation Partnership Project. Retrieved Feb 12, 2019

from http://www.3gpp.org/about-3gpp
[4] Amarisoft. 2019. Amarisoft UE. Retrieved Feb 12, 2019 from https://www.

amarisoft.com/
[5] Femto Forum. 2010. LTE MAC Scheduler Interface Specification. Technical Report.

Version 1.11.
[6] Xenofon Foukas, Mahesh K Marina, and Kimon Kontovasilis. 2017. Orion: RAN

Slicing for a Flexible and Cost-Effective Multi-Service Mobile Network Archi-
tecture. In Proceedings of the 23rd Annual International Conference on Mobile
Computing and Networking. ACM, 127–140.

[7] Xenofon Foukas, Navid Nikaein, Mohamed M Kassem, Mahesh K Marina, and
Kimon Kontovasilis. 2016. FlexRAN: A flexible and programmable platform for
software-defined radio access networks. In CoNEXT’2016. ACM, 427–441.

[8] Ismael Gomez-Miguelez, Andres Garcia-Saavedra, Paul D Sutton, Pablo Serrano,
Cristina Cano, and Doug J Leith. 2016. srsLTE: an open-source platform for LTE
evolution and experimentation. In WiNTECH’2016. ACM, 25–32.

[9] Aditya Gudipati, Daniel Perry, Li Erran Li, and Sachin Katti. 2013. SoftRAN:
Software defined radio access network. In HotSDN’2013. ACM, 25–30.

[10] Akhil Gupta and Rakesh Kumar Jha. 2015. A survey of 5G network: Architecture
and emerging technologies. IEEE access 3 (2015), 1206–1232.

[11] NGMN. 2019. Next Generation Mobile Networks. Retrieved Feb 12, 2019 from
https://www.ngmn.org/

[12] Navid Nikaein, Chia-Yu Chang, and Konstantinos Alexandris. 2018. Mosaic5G:
Agile and flexible service platforms for 5G research. ACM SIGCOMM Computer
Communication Review 48, 3 (2018), 29–34.

[13] O-RAN. 2019. Open RAN Alliance. Retrieved Feb 12, 2019 from http://https:
//www.o-ran.org/

[14] Linus Torvalds. 2005. Git. Retrieved Feb 12, 2019 from https://git-scm.com/
[15] USRP. 2011. National Instruments USRP. Retrieved Feb 12, 2019 from https:

//www.ettus.com

ACM SIGCOMM Computer Communication Review Volume 48 Issue 1, January 2018

http://www.3gpp.org/about-3gpp
https://www.amarisoft.com/
https://www.amarisoft.com/
https://www.ngmn.org/
http://https://www.o-ran.org/
http://https://www.o-ran.org/
https://git-scm.com/
https://www.ettus.com
https://www.ettus.com

	Abstract
	1 Introduction
	2 Scheduler Architecture in srsENB
	3 Distributed Programmable Architecture
	3.1 Scheduler agent in proposed architecture
	3.2 Separated scheduling function

	4 Comparison with FAPI
	5 Prototype
	5.1 Traffic prioritization example
	5.2 Resource slicing example

	6 Conclusion
	References

